FLEXIBLE SPRINKLER **RETROFIT ANALYZER**

Review & Hydraulic Validation

Abstract

This report outlines many of the concerns around adding flexible drops in existing systems, while also explaining the math. It also reviews calculations performed with hydraulic sprinkler software to validate the results of the CSA Retrofit Analyzer Excel file.

> Evaluation performed by: Scott Lacey, PE, CSP, SFPE

Images randomly selected from the internet to represent subject of report. This report is not supported by, nor does it indorse any particular product or brand. Report Date: 11/1/2017 Rev 1: 1/17/2018

Compliance Services and Assessments, LC (CSA) is a national fire protection installer assessment company. CSA evaluates fire protection installers to their knowledge of codes, safety requirements, and the application of such criteria. Most NFPA standards and building / fire codes require installers to be knowledgeable and qualified in the services they provide. CSA evaluates installers to the applicable codes based on what service they are providing. This process provides an assurance to the AHJ's that these installers have demonstrated a solid understanding of code requirements and the ability to use the referenced documents in their daily activities. While other national programs are focused around designer qualifications, CSA is specifically focused around the tasks of installers. Installers are required to re-test every three years to demonstrate knowledge with the ever changing codes. More information can be found at www.CSAexams.com or by email at info@CSAexams.com. The Excel file is available at the CSA website under the Contractor Information and AHJ Information links.

Lacey Fire Protection Engineering, LLC is an Arkansas based engineering firm dedicated to fire protection and life safety. Company President Scott Lacey has an extensive background including municipal / industrial firefighting, code enforcement as an AHJ, system design, and extensive commissioning with field conditions. In addition to designing an extensive number of suppression systems, Mr. Lacey has an extensive background in fire alarm and mass notifications systems for industrial and military clients. More information can be found at www.LaceyFPE.com.

Hydraulic software used in evaluation: HydraCAD 54 HydraCALC 50 HydraCAD and HydraCALC are Trademark products of Hydratec, Incorporated.

Representation of particular products within this report does not endorse any particular product. Such use is to identify that not all products are the same, and that each product must be evaluated independently. The intent of this report is to provide validation of the Analyzer Report only, and not validate any particular flexible product. Not all products on the market have been evaluated or identified.

Neither CSA nor Lacey FPE provides any warranty or guarantee for any product or software identified within this report. User is responsible for verification of all information and assumes all risk. The Flexible Sprinkler Analyzer Report and its format is protected under copyright of CSA 2017.

WHAT IS THE FLEXIBLE SPRINKLER RETROFIT ANALYZER

A free Excel-based worksheet that provides a professional report for use by code enforcers in evaluating flexible drops added to existing systems. Originally developed for alumni of the Oklahoma State University School of Fire Protection and Safety to better serve their customers in the sprinkler industry, it has been made freely available to anyone who can benefit. It can be downloaded from <u>www.CSAexams.com</u>. Updates and revisions will also be posted to the CSA web site. A lookup by brand version is also available.

FLEXIBLE SPRINKLER RETROFIT ANALYZER

Figure 1: Sample Section of Report (actual form may vary)

Over the years, flexible sprinkler drops have become more common, likely based on competition and lower costs. However, some of the flexible drops can demand a higher system pressure than previously installed schedule 40 pipe drops. Older systems, or even recently installed systems may not have hydraulically accounted for this higher pressure demand. As a result, incorporating these drops into such systems could negatively impact the performance of the system. There are some brands that have very little impact on system pressure. However, there are some brands that have a considerable impact on the required pressure. How is the Authority Having Jurisdiction (AHJ) supposed to know what the impact will be when approached by the contractor?

In an abundance of caution, code authorities frequently require contractors to provide new hydraulic calculations of the existing sprinkler system. If the contractor has the original calculations, has the same software, and the versions are compatible, than it may not be too difficult to re-calculate the system.

However, this simple approach is frequently not the case due to the following challenges:

- The original system was designed by a different contractor and the calculations are not available.
- The original system was calculated by a different designer in the same company and the original files cannot be located.
- The computer with the old calculations crashed and the company did not have an organized and backed up digital file system.
- Software has changed or has been upgraded and is no longer compatible.
- ✤ Many other reasons.

Without the original design files, calculation files, and proper software, portions of the system must be re-calculated from scratch. If accurate as-built drawings in pdf or hard copy are available, then the system can be re-created from scratch without climbing above ceilings. This may take a full day's work depending on available information.

Without drawings of the existing system, a detailed evaluation is required to re-design critical aspects of the system for calculations. In most cases the entire system will not have to be redesigned. However the area in question and the entire supply path serving the space must be traced back to the riser. This involves getting above the ceiling to evaluate pipe sizes, get measurements, identify elevation changes, elbows, offsets, and various other conditions. This may or may not be possible during working hours, or prior to bidding a project. This may be additionally challenged when the sprinkler piping passes through / over another tenant spaces or area that are not readily accessible or contractor welcomed to evaluate the system. This can be extremely difficult in buildings with many tenants. It can be very costly and time consuming taking days to weeks to get access and evaluate the entire system serving the particular space being renovated.

When in reality, the use of flexible sprinkler drops may have NO impact on a system, or can easily have less than 2 psi impact depending on the brand and length of the flexible drop to be used vs. the existing sprinkler drops to be changed.

The purpose of the Flexible Sprinkler Retrofit Analyzer is to help contractors and jurisdictions evaluate and document the impact of such a retrofit project. Using this tool, the code authority can feel confident in what the impact will be, without burdening every contractor of every project by performing new calculations for systems that may not be impacted.

The AHJ has a responsibility to ensure protection, while also being sensitive to the needs, costs, and project schedules of their customers. CSA has tried to help the AHJ and their customers by developing the tool.

UNDERSTANDING THE IMPACT

It is important to understand how incorporating flexible drops into a system impacts the pressure demand on the system.

First, the addition of flexible drops is not accumulative. This means that adding 50 flexible sprinkler drops does not negatively impact the system any more than a single flexible drop. Let's say that a flexible drop has a 2 psi pressure loss. This means that the <u>pressure in the branch line</u> where the flexible drop connects, must have a pressure that is 2 psi higher than the minimum required head pressure. Thus, assuming all the flex drops are the same (2 psi loss), than the additional 2 psi in the branch line is now available to all the other flexible drop connections. So, as long as you achieve the needed pressure for the remote (worst case) drop, all the others will have at least the same, and even higher pressures as you get closer to the source. The additional flow closer to source is discussed later.

Figure 2: Pressure Needed for One is Same for All. Flex Pressures are not Accumulative.

Second, the reason that flexible drops can impact a system is due to the corrugated nature of the tubbing / hose used in the flex drop. Schedule 40 pipe typically used on sprinkler drops is relatively smooth pipe with relatively smooth elbows. As a result, there is not a lot of resistance on the flow of water through the pipe. However, flexible sprinkler drops

vary in corrugation, or ripples, allowing for the ability to bend. This corrugation creates turbulent flow resulting in pressure loss. Each time the tubing is bent creates additional turbulent flow. The more turbulent the flow, the higher pressure that is required to flow the same amount of water in gallons per minute.

Now, if you want to get technical, it is true that sprinklers closer to the source will have a higher pressure drop between the branch line and head while also flowing a higher gallon per minute (or gpm density). This is the result of a higher pressure closer to the source than at the furthest remote head. It is important to understand that this closer drop does not need a higher pressure to achieve the required density, it just happens to have a higher pressure being closer to the source, thus resulting in a higher flow. This higher flow will indicate a higher pressure demand in the calcs. For example lets say the remote head is flowing 20 gpm for a density of 0.1 over 200 ft². Yet, the head closest to the source is flowing 27 gpm over a 200 ft² area per head. Because the demand does not require 27 gpm, the higher pressure and thus drop is not necessary to achieve the minimum required density.

Note that the analyzer assumes the existing system was sized to support the density evaluated. Meaning, if the original system was designed for a density of 0.1 gpm/ft², than the analyzer CANNOT be used to evaluate a new density of 0.15 gpm/ft². The density used in the analyzer must be the same or lower than the original design criteria for proper pipe sizing and water supply.

EQUIVALENT SCHEDULE 40 PIPE LENGTH

Let's look at equivalent pipe length as it relates to the flexible hose. A 5 foot length of schedule 40 pipe has an equivalent length of 5 feet. Pretty simple. Now, a standard 1 inch elbow has the equivalent friction loss of 2 feet of pipe. Thus, if you have 2 elbows and 5 feet of pipe, you would have an equivalent length of 9 feet of pipe (5' + 2' + 2' = 9'). Because 1 inch pipe is the normal, and minimum pipe size allowed, in a sprinkler drop, flexible drops are evaluated to result in an equivalent length of schedule 40 1-inch pipe. Basically, the friction loss through a section of flexible drop is calculated backwards to an equivalent length of schedule 40 pipe. This evaluation is based on a correlating number of bends, such as 3. So a 48 inch flexible drop allowed to have 3 bends has been determined to have the same pressure loss as a 24 foot section of straight pipe (as an example). Another brand of flex, or a different evaluation may say that the same 48 inch flexible drop with 4 bends would have an equivalent loss of 30 feet of pipe. The number of bends and the equivalent length will vary by each brand, length, sprinkler outlet size, outlet orientation, and other factors. Thus, there is no one-size fits-all. This is why the Retrofit Analyzer requires the worst case drop by brand, length, and bends to be evaluated. This is also why AHJ's get concerned when flex drops are added to previously calculated systems without new evaluation.

OK, it gets a little more complicated. The typical value used is based on Underwriters Laboratories (UL) evaluation procedures. The UL criteria allows for a smaller radius (tighter) bend. UL is nearly always the value recognized by jurisdictions as it is a minimum value most in favor of the client (owner/contractor). This follows the same principle generally applied by NFPA standards as code minimums. Factory Mutual (FM) on the other hand, has different criteria. Factory Mutual is a large insurance carrier who establishes criteria more focused on limiting property loss (smaller \$ payouts) than code minimum which could result in a higher \$\$ loss in controlling the fire. As such, FM requires a larger radius in its bends (wider bend) and also applies a higher value for equivalent pipe length (more conservative). Thus a product with a UL equivalent length of 24 feet may have a FM equivalent of 34 feet. So when looking at manufacturers data, it is important to verify the criteria used, and the number of bends allowed. Some brands may have values indicated for 3, 4, 5 and even 8 bends. However, it is generally not practical to have 8 bends in a 4 foot flex drop. This is another reason why the Retrofit Analyzer requires the contractor to identify how many bends they will use based on the equivalent pipe length calculated. We caution the AHJ to NOT require the highest value on the table. This unnecessarily punishes the manufacturer for providing data on more bends, rather than being realistic and letting the installer identify the maximum number of bends they will use. The field inspector should be using the Retrofit Analyzer Report to verify installed conditions to the agreement submitted by the contractor via the report.

CREDIT FOR EXISTING SPRINKLER DROPS

When evaluating the impact of adding a flexible drop, it is important to also account for friction loss of the existing sprinkler drop to be replaced. There are different ways that an existing drop may supply sprinklers. It could be a simple 1 foot drop straight down from the branch line to the ceiling grid (not common and not center of tile). It may be a shell system with sprinklers directly on the branch lines now to be dropped to a new suspended ceiling. It could also be a common center of tile arm-over which would incorporate 4 elbows and 5 feet of straight pipe resulting in an equivalent length of 12 feet of schedule 40 pipe.

If the new flexible drop has an equivalent length of 15 feet, and the existing center of tile arm-over equals 12 feet, than there is only a 3 foot impact by adding the new drop.

Because of such consideration, the CSA Retrofit Analyzer allows credit for the existing sprinkler drops, but does not require this credit, such as build-out of shell spaces.

SAFETY MARGINS IN EXISTING SYSTEMS

Most systems will have margins of safety. Use them! Now, that said, there are some things to keep in mind.

NFPA 13 requires that fire flow values used in calculations for all systems account for fluctuations such as seasonal water usage, future growth such as in undeveloped areas, domestic flows, and other such changes. There are many times that such fluctuations may not be appropriately considered, or at least not clearly identified between actual fire flow results and fire flow values used in calculations.

It is not uncommon for good designers to incorporate a margin of safety in their hydraulic designs. This margin may be 5 psi or even 20 psi. This margin is to account for

fluctuations in seasonal water pressure, future renovations, future build-out of shell spaces, and/or just good design practice. However, there are also designers who will put it to the line with no margin of safety. Although this is not good practice, fortunately there are a number of safety factors already built into the NFPA 13 calculation process. It is more likely we would lose a building due to changes in fuel load, than due to a margin of safety.

Many jurisdictions will require minimum margins of safety in calculations. This is commonly 5, 10, 15, or even 20 psi. Again, this may be for various reasons including seasonal fluctuation, future growth and demand on the water system, future renovations, or other factors. Such minimums are also frequently required by insurance companies, federal projects, or owners. When evaluating the impact of flexible drops we would suggest that these jurisdictions requiring such margins of safety consider allowing these, or a portion of these, margins for such renovations. Again, a common reason for the margin of safety was to account for future changes such as renovations. Adding flexible drops is a renovation that should be allowed to utilize some of this margin of safety. Example, if the AHJ has a standard policy of requiring a 10 psi margin of safety, than they could allow up to 3 psi to be used for renovations such as incorporating flexible drops.

The CSA Retrofit Analyzer requires that a margin of safety be entered when evaluating the impact of adding flexible drops. There is a pull down menu allowing the source of this margin of safety. This could be based on previous calculations for that area, a flat psi margin required by the AHJ, or a psi margin allowed by the AHJ for renovation work, such as the 3 psi discussed above. Again, a value is required for the margin of safety, so users need to identify the source.

Notes in the report identify that pipe schedule systems will require hydraulic calculations and the Analyzer should not be used on pipe schedule systems. This is because it has been found that many pipe schedule systems may not pass current criteria nor have the same water pressures when originally installed.

VALIDATION OF CALCULATIONS

To validate the effectiveness of the Flexible Sprinkler Retrofit Analyzer Excel file, we prepared a sample light hazard remote area in HydraCAD which was calculated using HydraCALC. The sample area had the following parameters for evaluation:

- A light hazard density of 0.1 gpm per square feet over a 12' x 14' (168 ft²) area.
- Eight operating sprinklers protecting an area of 1,344 ft².
- A 4 inch underground supply that is 50' long from source to riser and incorporates a PIV and "T" at point of connection.
- A 2.5 inch riser with alarm valve, gate valve, and fixed 6 psi for backflow loss.
- A 2.5 inch supply main from riser to remote area that is 150 feet long.
- Two branch lines serving 4 heads each.

Table 1 provides the results between calculations of the CSA Retrofit Analyzer Excel file, and HydraCALC hydraulic sprinkler software. The values presented are pressure loss in psi between the branch line and the sprinkler head based on sprinkler drop utilized. The simple arm-over had an equivalent length of 8.1 feet. The center of tile arm-over had an equivalent length of 48 inches.

Table 1: Comparison of Calculation Method – Pressure Loss in PSI (equ. length in ft)

			These c additional over an exis	olumns repre psi per drop a sting Center o over	sent the adding flex of Tile Arm-
Method of Calculation	Simple Arm- over	Existing Center of Tile Arm-over	Victaulic VicFlex	FlexHead	Viking SprinkFlex
HydraCALC	0.77 (8.1)	1.22 (12.8)	0.71 (19.5)	1.13 (24)	4.15 (56)
Retrofit Analyzer			0.71 (19.5)	1.13 (24)	4.15 (56)
Comparison			Same values	Same values	Same values

As indicated in Table 1, the values from both HydraCALC and the Retrofit Analyzer are the same, which would be expected since they both use Hazen Williams as the key equation with the same variables.

It is therefore concluded that the Flexible Sprinkler Retrofit Analyzer Excel sheet provides an effective means of evaluating the impact of adding flexible sprinkler drops to an existing hydraulically calculated system having an appropriate margin of safety.

SUPPORTING DATA

The hydraulic calculations from HydraCALC, drawing views from HydraCAD, and the corresponding Retrofit Analyzer reports are included within this report as part of the validation results. These documents start on page 10.

CONCLUSION

The CSA Flexible Sprinkler Retrofit Analyzer presented values representative of detailed hydraulic analysis of the sample configuration. Both methods utilize the Hazen Williams formula, evaluate the same minimum required flow per head, and over the same distance of pipe. Review of the overall systems margin of safety was within the analyzers results. However, considering time and \$\$, the retrofit analyzer was considerably quicker and less expensive to reach the same conclusion. The report provides for a clean and professional summary of what is proposed for an over-the-counter permit, while also providing critical information for the field inspection.

VICTAULIC VICFLEX EXAMPLE

FLEXIBLE SPRINKLER RETROFIT ANALYZER

Used to evaluate the impact of adding flexible drops to an existing system.

Enter information into Green and Yellow fields.

Project Name	Sample Re	novation to O	ffica Snaca			Date:	1	0/11/2017
Project Name.	Sample Ke					Date.	1)/11/2017
Project #: 17-02	1234		If applicabl	е	Permit #:			
Project Address	(street, city,	st, zip):	1234 Happy	y Valley Dr. Y	Your City a	nd State		
Installing Contra	ctor:	Want to Do i	t Right, LLC					
Contact Person:	Will Design	ı, Jr		Phone:	501-712-12	272		
Brand & Length	of Flexible h	ose used:	VicFlex 48"	' 1/2" outlet		Model:	AH2-300	
Equivalent UL le pipe: (Attae	ength of 1" s ch mfg. data	Schedule 40 sheet.)	19.5 ft	Allowed bends:	3	Based on long length, b	est length used a pends,& fittings, p	ccounting for per mfg.
Common equiva for exi	lent lengths sting drops:	Existin	g arm-over	center of tile	e 12'	Credit take subtrae	en in ft (will be cted from flex):	12.0 ft
Maximum cover	age area pei	r sprinkler:	12.0	ft x	14.0	ft =	168	ft²
Density: 0.10	gpm/ft	Flow pe	er sprinkler:	16.8		psi	loss per ft:	0.094
		Total additio	nal psi requi	ired for hose	e selected:		0.71	psi
In the field below source used to e	v, click on pi stablish the	ull-down arro [.] existing syste	w and select ms safety m	t the largin:		Enter safe belo	ety margin ow:	
Known safety ma	argin from h	ydraulic calcu	lations	Ū		Safety:	10.9	psi
Note: When using relevant for the sa	existing hydr me zone/rise	aulic calculatio r and the same	ns, they must floors remote	be e area.		Some jur default valu	isdictions mav ue for hydraul	/ allow a ic systems.
If calculations were	e used for est	ablishing safet	y factor, prov	ide informati	on below an	d attach copy	y of calculatio	ns.
Date of the calcu	lations:	10/11/2017	Name	e of project o	calculated:	Example by	/ Lacey FPE	
Based on the ir	formation p hose indic	provided for th cated:	ne flexible	SAFE	FY MARGIN	I IS ACCEPT	ABLE	←Results
		Warnir	ngs (if					
I hereby attest th	nat the infor	applica mation repre	sented in th	is form is ac	curate and	represents	the worst ca	se
conditions for th	e flexible dr	ops to be use	d in the proj	ect indicate	d.			
Contracto	r Signature:					Date:		
Accepted by:						Date:		
Notes:								
Actual calculatio	ns indicated	that center of	of tile arm-ov	ver pipe with	1 2' of mov	ement had ı A difference	pressure los	s of 1.31
This form has been do			a iurisdictions on	d contractors ov		et of adding flow	(ible enrinkler dr	and to ovicting
hydraulically calcul	ated systems. Th calculations. N	nis tool uses simple o guarantee or wa	e calculations rec rranty is expresse	ognized by stand ed or implied in t	lards such as Ni he use of this t	PA 13. Pipe Sch ool. User assume	nedule systems re es risk.	equire new
© 2017 CSA		Compli	ance Service	es and Asses	sments, LC	`		
Do not unlock / mod locked fields	ify	Evaluating "Without asso	Fire Protect essments, al	ion Installer I you have a	Qualificati re assumpt	ons ions!"		DA
Rev. 10/11/17	ww	w.CSAexams.o	com info@	CSAexams.c	om (501)	712-1272		

Engineering, LLC

Mass Notification - Life Safety Fire Alarms - Sprinklers Process Safety - Plan Review Commissioning

All your FPE needs!

www.LaceyFPE.com info@LaceyFPE.com

Lacey Fire Protection Eng. LLC PO Box 723 Greenbrier, AR 72058 (501) 679-1753

Job Name : 48 Inch Long VicFlex Equal to 19.5' Schedule 40 1" Building : Location : System : Contract : Data File : 48vicflex Area 1.WXF

Water Supply Curve C

Lacey Fire Protection Eng. LLC 48 Inch Long VicFlex Equal to 19.5' Schedule 40 1"

City W C C C	/ater Sup 21 - Static 22 - Resic 22 - Resic	ply: c Pressur dual Pres dual Flow	e : 55 sure: 40 : 1000)						Demand: D1 - D2 - Hose D3 - Safet	Elevation System Flow System Pressu (Demand) System Demar y Margin	: 5.197 : 143.133 ire : 43.318 : 100 nd : 243.133 : 10.586
150 140												
130 D 120												
R^{110}												
s ⁹⁰ s ⁸⁰												
U ⁷⁰ R ⁶⁰	C1											
E ⁵⁰ 40	- -	D2 0										0
30 20		03										
10	D1 100 20		 00 4	00	500	600		00	800		900	
					FLU	28.1 יי אר) איר)					

Flow Diagram

Lacey Fire Protection Eng. LLC 48 Inch Long VicFlex Equal to 19.5' Schedule 40 1"

16.8 **DP04 EQ01**

16.8 **DP02 EQ02**

Fittings Used Summary

Lacey Fire Protection Eng. LLC 48 Inch Long VicFlex Equal to 19.5' Schedule 40 1"

Fitting Le Abbrev.	gend Name	1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
A E T	Alarm Rel E1 & E3 NFPA 13 90' Standard Elbow NFPA 13 90' Flow thru Tee	1 3	2 4	2 5	3 6	4 8	5 10	7.7 6 12	21.5 7 15	8 17	17 10 20	12 25	27 14 30	29 18 35	22 50	27 60	35 71	40 81	45 91	50 101	61 121

Units Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Pressure / Flow Summary - STANDARD

Lacey Fire Protection Eng. LLC 48 Inch Long VicFlex Equal to 19.5' Schedule 40 1"

Page 4 Date 10/11/2017

									_
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.	_
DP01	10.0	5.6	9.0	na	16.8	0.1	168	7.0	
EQ01	12.0		10.16	na					
DP02	10.0	5.6	9.0	na	16.8	0.1	168	7.0	
EQ02	12.0		10.44	na		••••			
100	12.0	K = K @ EQ01	10.16	na	16.8				
101	12.0	K = K @ EQ02	10.51	na	16.85				
102	12.0	K = K @ EQ02	11.76	na	17.83				
103	12.0	K = K @ EQ02	14.52	na	19.81				
104	12.0		16.59	na					
105	12.0		16.84	na					
106	12.0		17.16	na					
TOR	12.0		29.6	na					
BOR	-4.0		44.81	na					
TEST	0.0		43.32	na	100.0				
107	12.0	K = K @ EQ01	10.32	na	16.93				
108	12.0	K = K @ EQ02	10.67	na	16.98				
109	12.0	K = K @ EQ02	11.95	na	17.97				
110	12.0	K = K @ EQ02	14.74	na	19.96				

The maximum velocity is 11.32 and it occurs in the pipe between nodes 110 and 105

Final Calculations - Hazen-Williams - 2007

Lacey Fire Protection Eng. LLC 48 Inch Long VicFlex Equal to 19.5' Schedule 40 1"

Page	5
Date	10/11/2017
Date	10/11/201

Hvd.	Qa	Dia.	Fittin	a.	Pipe	Pt	Pt			.,
Ref.	Qu	"C"	01	9	Ftng's	Pe	Pv	******	Notes	*****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn		110100	
			•							
DP01	16 80	1 049	F	20	19 500	9 000		K Factor	= 5 60	
to	10.00	120.0	-	0.0	2.000	-0.866			- 0.00	
EQ01	16.8	0.0942		0.0	21.500	2.026		Vel = 6.2	24	
	0.0 16.80					10.160		K Factor	= 5.27	
DP02	16.80	1.049	Т	5.0	(19.500)	9.000		K Factor	= 5.60	
to		120.0		0.0	5.000	-0.866				
EQ02	16.8	0.0942		0.0	24.500	2.309		Vel = 6.2	24	
	0.0 16.80	C				10.443		K Factor	= 5.20	
100	16.80	1.38		0.0	14.000	10.16 <mark>Usir</mark>	ng this pi	essure per	foot.	
to		120.0		0.0	0.0	^{0.0} We	do not a	ccount for th	ne "T" fit	tina
101	16.8	0.0248		0.0	14.000	$-\frac{0.34}{0}$ of 5	' or the e	levation dai	n as bot	h of —
101	16.85	1.38		0.0	14.000	10.50	e would	also apply t	n de set	
to	00.05	120.0		0.0	0.0	0.0	ular oprin	klor drop 7		5'
102	33.65	0.0896		0.0	14.000	1.25 ey	inal shiil	ikiel ulup.	11105 19. - 40'	J
102	17.83	1.38		0.0	14.000	11.76 <mark>equ</mark>	ivalent fi	ex minus the	9 12	
102	51 / 8	0 1068		0.0	0.0		sting equ	ivalent drop	results	in a
100	40.04	0.1900	–	0.0	14.000		/ equival	ent of 7.5' x	0.0942 :	=
to	19.61	1.01	I	8.0 0.0	4.210	0.0	1 psi mor	e than a cei	nter of ti	le
104	71.29	0.1696		0.0	12.210	2.07dro	э.			
104	0.0	2,469		0.0	12.000	16.588				
to	010	120.0		0.0	0.0	0.0				
105	71.29	0.0212		0.0	12.000	0.254		Vel = 4.1	78	
105	71.84	2.469		0.0	4.140	16.842				
to		120.0		0.0	0.0	0.0				
106	143.13	0.0768		0.0	4.140	0.318		Vel = 9.5	59	
106	0.0	2.469	2E	12.0	150.000	17.160				
to	440.40	120.0		0.0	12.000	0.0			-0	
	143.13	0.0768	-	0.0	162.000	12.436		vei = 9.:	59	
TOR	0.0	2.469	E	6.0 77	16.000	29.596		* * Fixed	000 - 6	
BOR	143 13	0.0768	A	0.0	29 700	2 280			LUSS = 0 59	
BOR	0.0	1 1		0.0	50,000	44 806		VCI = 0.	55	
to	0.0	140.0		0.0	0.0	-1 732				
TEST	143.13	0.0049		0.0	50.000	0.244		Vel = 3.4	48	
	100.00 243 13					43 318		Qa = 10 K Factor	0.00 = 36.94	
107	16 02	1 38		0.0	14 000	10 321		K Factor	@ node E	001
to	10.00	120.0		0.0	0.0	0.0			S HOUC L	
108	16.93	0.0251		0.0	14.000	0.352		Vel = 3.0	63	
108	16.99	1.38		0.0	14.000	10.673		K Factor	@ node E	Q02
to		120.0		0.0	0.0	0.0				
109	33.92	0.0909		0.0	14.000	1.273		Vel = 7.2	28	
109	17.96	1.38		0.0	14.000	11.946		K Factor	@ node E	Q02
to		120.0		0.0	0.0	0.0			4.0	
110	51.88	0.1996		0.0	14.000	2.795		Vel = 11.	13	

Final Calculations - Hazen-Williams

Lacey Fire Protection Eng. LLC 48 Inch Long VicFlex Equal to 19.5' Schedule 40 1"									Page 6 Date 10/11/2017			
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fittinç or Eqv.	g Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	*****	Notes *****			
110	19.96	1.61	Т	8.0	4.210	14.741		K Factor	@ node EQ02			
to		120.0		0.0	8.000	0.0						
105	71.84	0.1721		0.0	12.210	2.101		Vel = 11	.32			
	0.0											
	71.84					16.842		K Factor	= 17.51			

48 INCH VICFLEX

FLEXHEAD EXAMPLE

FLEXIBLE SPRINKLER RETROFIT ANALYZER

Used to evaluate the impact of adding flexible drops to an existing system.

Enter information into Green and Yellow fields.

Project Name:	Sample Reno	vation to O	ffice Space			Date:	10	0/11/2017
Project #: 17-02	1234		If applicab	le	Permit #:			
Project Address	(street, city, st	, zip):	1234 Happy	y Valley Dr. Y	'our City ar	nd State		
Installing Contra	ctor: N	/ant to Do i	t Right, LLC					
Contact Person:	Will Design, J	r		Phone: 5	501-712-12	272		
Brand & Length	of Flexible hos	e used:	FLEXHEAD 4	48" 1/2" Out		Model:		2048
Equivalent UL l pipe: (Atta	ength of 1" Scł ch mfg. data sł	hedule 40 neet.)	24.0 ft	Allowed bends:	4	Based on longe length, b	est length used a ends,& fittings, p	ccounting for per mfg.
Common equiva for exi	lent lengths sting drops:	Existin	g arm-over	center of tile	: 12'	Credit take subtrac	n in ft (will be cted from flex):	12.0 ft
Maximum cover	age area per s	prinkler:	length 12.0	ft x	14.0	ft =	168	ft²
Density: 0.10	<mark>)</mark> gpm/ft	Flow pe	er sprinkler:	16.8		psi	loss per ft:	0.094
	Т	otal additio	nal psi requi	ired for hose	selected:		1.13	psi
In the field below	v, click on pull-	-down arro	w and select	t the		Enter safe	ty margin	
source used to e	stablish the ex	isting syste	ms safety m	nargin:		belo	ow:	
Known safety ma	argin from hyd	Iraulic calcu	lations			Safety:	10.9	psi
<i>Note: When using</i> <i>relevant for the sa</i>	existing hydraui me zone/riser ai	lic calculatio nd the same	ns, they must floors remote	: be e area.		Some juri default valu	isdictions may le for hydraul	7 allow a ic systems.
If calculations wer	e used for estab	lishing safet	y factor, prov	ide informatio	on below an	d attach copy	of calculatio	ns.
Date of the calcu	lations: 1	0/11/2017	Name	e of project c	alculated:	Example by	Lacey FPE	
Based on the ir	formation pro hose indicat	ovided for th ted:	ne flexible	SAFET	Y MARGIN	I IS ACCEPT	ABLE	\leftarrow Results
		Warnir	ngs (if					
	aat tha informa	applica	able):	in forma in a se				
conditions for th	e flexible drop	is to be use	d in the proj	ject indicated	d.	represents	line worst ca	se
Contracto	r Signature:					Date:		
Accepted by:						Date:		
Notes:								
Actual calculatio psi. while 48" fle	ns indicated th xible drop (sar	nat center o me moveme	of tile arm-ov ent+) had pr	ver pipe with essure loss c	1 2' of mov of 1.87 psi.	ement had p A differenc	pressure loss e of 0.5 psi.	s of 1.31
This form has been de hydraulically calcul	veloped by CSA as a ated systems. This t calculations. No g	a tool in assisting tool uses simple uarantee or wa	g jurisdictions an calculations rec rranty is express	d contractors eva ognized by standa ed or implied in tl	aluate the impa ards such as NI he use of this t	nct of adding flex PA 13. Pipe Sch pol. User assume	ible sprinkler dro iedule systems re es risk.	ops to existing equire new
© 2017 CSA Do not unlock / mod locked fields Rev. 10/11/17	ify "V WWW.(Compli Evaluating Vithout asso CSAexams.o	ance Service Fire Protect essments, al com info@	es and Assess ion Installer I you have an CSAexams.c	sments, LC Qualificati re assumpt om (501)	、 ons ions!" 712-1272		SA

Engineering, LLC

Mass Notification - Life Safety Fire Alarms - Sprinklers Process Safety - Plan Review Commissioning

All your FPE needs!

www.LaceyFPE.com info@LaceyFPE.com

Lacey Fire Protection Eng. LLC PO Box 723 Greenbrier, AR 72058 (501) 679-1753

Job Name : 48 Inch Long FlexHead Equal to 24' Schedule 40 1" Building : Location : System : Contract : Data File : 48SprinkFlex Area 1.WXF

Water Supply Curve C

Lacey Fire Protection Eng. LLC 48 Inch Long FlexHead Equal to 24' Schedule 40 1"

City Wate C1 - C2 - C2 -	er Supply: Static Press Residual Pre Residual Flo	ure : 55 ssure: 40 w : 100	0						Der	nand: D1 - Eleva D2 - Syste D2 - Syste Hose (De D3 - Syste Safety Ma	ition m Flow m Pressure mand) m Demand rgin	: 5.197 : 142.81 : 43.665 : 100 : 242.81 : 10.242	
150 140 130 P 120 R 110 E 100 S 90 S 80 U 70 R 60 E 50 40 30 20	C1 D2 D3												
10	. D1	300 4		500 F	600 LOW (N ^ 1.	85)	700	80	00	<u></u> 8	000]

Flow Diagram

Lacey Fire Protection Eng. LLC 48 Inch Long FlexHead Equal to 24' Schedule 40 1"

16.8 **DP04 EQ01**

16.8 **DP02 EQ02**

Fittings Used Summary

Lacey Fire Protection Eng. LLC 48 Inch Long FlexHead Equal to 24' Schedule 40 1"

Fitting Le Abbrev.	gend Name	1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
A E T	Alarm Rel E1 & E3 NFPA 13 90' Standard Elbow NFPA 13 90' Flow thru Tee	1 3	2 4	2 5	3 6	4 8	5 10	7.7 6 12	21.5 7 15	8 17	17 10 20	12 25	27 14 30	29 18 35	22 50	27 60	35 71	40 81	45 91	50 101	61 121

Units Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Pressure / Flow Summary - STANDARD

Lacey Fire Protection Eng. LLC 48 Inch Long FlexHead Equal to 24' Schedule 40 1"

Page 4 Date 10/11/2017

	-	•						
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
DP01	10.0	56	9.0	na	16.8	0.1	168	7.0
EQ01	12.0	0.0	10.58	na	10.0	0.1	100	7.0
DP02	10.0	56	9.0	na	16.8	0.1	168	70
EQ02	12.0	0.0	10.87	na	10.0	0.1	100	1.0
100	12.0	K = K @ EQ01	10.58	na	16.8			
101	12.0	K = K @ EQ02	10.93	na	16.85			
102	12.0	K = K @ EQ02	12.19	na	17.79			
103	12.0	K = K @ EQ02	14.94	na	19.7			
104	12.0		17.0	na				
105	12.0		17.25	na				
106	12.0		17.57	na				
TOR	12.0		29.95	na				
BOR	-4.0		45.15	na				
TEST	0.0		43.66	na	100.0			
107	12.0	K = K @ EQ01	10.75	na	16.93			
108	12.0	K = K @ EQ02	11.1	na	16.98			
109	12.0	K = K @ EQ02	12.37	na	17.92			
110	12.0	K = K @ EQ02	15.16	na	19.84			

The maximum velocity is 11.29 and it occurs in the pipe between nodes 110 and 105

Final Calculations - Hazen-Williams - 2007

Lacey Fire Protection Eng. LLC 48 Inch Long FlexHead Equal to 24' Schedule 40 1"

Page	5
Date	10/11/2017

				; 40 1				Dai		1/2017
Hvd.	Qa	Dia.	Fittin	a	Pipe	Pt	Pt			
Ref.	Qu	"C"	OI	9	Ftna's	Pe	Pv	******	Notes	*****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn			
			•							
DP01	16.80	1.049	Е	2.0	24.000	9.000		K Factor	= 5.60	
to		120.0		0.0	2.000	-0.866				
EQ01	16.8	0.0942		0.0	26.000	2.450		Vel = 6.2	24	
	0.0									
	16.80					10.584		K Factor	= 5.16	
DP02	16.80	1.049	Т	5.0	24.000	9.000		K Factor	= 5.60	
	16.8	120.0		0.0	5.000	-0.866			24	
	10.0	0.0942	\leqslant	0.0	29.000	2.755	Using this		er foot	
	16.80					10 867	We do no	t account fo	r the "T	" fitting
100	16.80	1 38		0.0	14 000	10.584	$_{of 5' or th}$			hoth of
to	10.00	120.0		0.0	0.0	0.0			yani as Iu ta tha	
101	16.8	0.0248		0.0	14.000	0.347	these wot	liu also app		; 0.41
101	16.85	1.38		0.0	14.000	10.931	=regular sp	rinkier arop). Inus	24
to		120.0		0.0	0.0	0.0	equivalen	t flex - the 1	2' existi	ng
102	33.65	0.0896		0.0	14.000	1.255	_equivalen	t drop resul	ts in a n	ew
102	17.79	1.38		0.0	14.000	12.186	equivalen	t of 12' x 0.	0942 = 1	I.13 psi
to	FA AA	120.0		0.0	0.0	0.0	more thar	n a center o	f tile dro	р.
103	51.44	0.1965		0.0	14.000	2.751		Vel = 11.	03	
103 to	19.70	1.61	I	8.0	4.210	14.937		K Factor	@ node E	Q02
104	71.14	0.1690		0.0	12.210	2.063		Vel = 11.	21	
104	0.0	2 469		0.0	12 000	17 000				
to	0.0	120.0		0.0	0.0	0.0				
105	71.14	0.0211		0.0	12.000	0.253		Vel = 4.1	77	
105	71.67	2.469		0.0	4.140	17.253				
to		120.0		0.0	0.0	0.0				
106	142.81	0.0763		0.0	4.140	0.316		Vel = 9.5	57	
106	0.0	2.469	2E	12.0	150.000	17.569				
	1/2 01	120.0		0.0	12.000	0.0			57	
	0.0	0.0703	F	0.0	102.000	20.054		vei – 9.,	71	
to	0.0	2.409		0.0 7 7	13 700	29.904		* * Fixed	055 – 6	
BOR	142.81	0.0764	7.	0.0	29.700	2.270		Vel = 9.5	57 57	
BOR	0.0	4.1		0.0	50.000	45.154				
to		140.0		0.0	0.0	-1.732				
TEST	142.81	0.0049		0.0	50.000	0.243		Vel = 3.4	17	
	100.00							Qa = 10	0.00	
	242.81					43.665		K Factor	= 36.75	
107	16.93	1.38		0.0	14.000	10.747		K Factor	@ node E	Q01
t0 108	16.02	120.0		0.0	0.0	0.0		\/ol _ 2/	22	
100	10.93	1.0201		0.0	14.000	11 000			0 2040 F	002
to	10.98	1.30 120 0		0.0	14.000 0.0	0.0		r ractor	e node E	QU2
109	33.91	0.0909		0.0	14.000	1.272		Vel = 7.2	27	
109	17.92	1.38		0.0	14.000	12.371		K Factor	@ node E	Q02
to		120.0		0.0	0.0	0.0				
110	51.83	0.1993		0.0	14.000	2.790		Vel = 11.	12	

Final Calculations - Hazen-Williams

Lacey Fire Protection Eng. LLC 48 Inch Long FlexHead Equal to 24' Schedule 40 1"								Page 6 Date 10/11/2017			
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv.	g Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	*****	Notes *****		
110	19.84	1.61	Т	8.0	4.210	15.161		K Factor	@ node EQ02		
to		120.0		0.0	8.000	0.0					
105	71.67	0.1713		0.0	12.210	2.092		Vel = 11.	.29		
	0.0										
	71.67					17.253		K Factor	= 17.25		

48 INCH FLEXHEAD

FLEXIBLE SPRINKLER RETROFIT ANALYZER

Used to evaluate the impact of adding flexible drops to an existing system.

Enter information into Green and Yellow fields.

Project Name: Sample Renovation to O	ffice Space			Date:	1	0/11/2017		
Project #: 17-01234	If applicabl	e	Permit #:					
Project Address (street, city, st, zip):	1234 Happy	y Valley Dr. Y	our City ar	nd State				
Installing Contractor: Want to Do i	t Right, LLC							
Contact Person: Will Design, Jr		Phone: 5	501-712-12	272				
Brand & Length of Flexible hose used:	Viking Sprir	nkFlex 48" 1/	'2" Out	Model: SFN48H				
Equivalent UL length of 1" Schedule 40 pipe: (Attach mfg. data sheet.)	56.0 ft	Allowed bends:	3	Based on longes length, be	st length used a nds,& fittings, _l	accounting for per mfg.		
Common equivalent lengths for existing drops:	g arm-over	center of tile	e 12' width	Credit taken subtract	n in ft (will be ted from flex):	12.0 ft		
Maximum coverage area per sprinkler:	12.0	ft x	14.0	ft =	168	ft²		
Density: 0.10 gpm/ft Flow pe	er sprinkler:	16.8		psi l	oss per ft:	0.094		
Total additio	nal psi requi	red for hose	selected:		4.15	psi		
In the field below, click on pull-down arro source used to establish the existing syste	w and select ms safety m	the argin:		Enter safet belo	y margin w:			
Known safety margin from hydraulic calcu	lations	U		Safety:	10.9	psi		
Note: When using existing hydraulic calculatio relevant for the same zone/riser and the same	ns, they must floors remote	be e area.		Some juris default value	dictions mains for hydraul	y allow a lic systems.		
If calculations were used for establishing safet	y factor, prov	ide informatio	on below an	d attach copy	of calculatio	ons.		
Date of the calculations: 10/11/2017	Name	e of project o	alculated:	Example by	Lacey FPE			
Based on the information provided for th hose indicated:	he flexible	SAFET	Y MARGIN	I IS ACCEPTA	BLE	←Results		
Warnir applica	ngs (if able):							
I hereby attest that the information repre conditions for the flexible drops to be use	sented in th d in the proj	is form is acc ect indicated	curate and d.	represents tl	he worst ca	ise		
Contractor Signature:				Date:				
Accepted by:				Date:				
Notes:	6							
Actual calculations indicated that center c	of tile arm-ov ent) had pre	er pipe with ssure loss of	1 2' of mov ⁵ 4.88 psi. 7	ement had p A difference (ressure los of 3.57 psi.	s of 1.31		
This form has been developed by CSA as a tool in assistin hydraulically calculated systems. This tool uses simple calculations. No guarantee or wa	g jurisdictions an calculations rec rranty is expresse	d contractors eva ognized by stand ed or implied in t	aluate the impa ards such as NI he use of this t	ict of adding flexil PA 13. Pipe Sche pol. User assumes	ble sprinkler dre edule systems re s risk.	ops to existing equire new		
© 2017 CSA Compli Do not unlock / modify locked fields "Without asse Rev. 10/11/17 www.CSAexams.e	ance Service Fire Protect essments, al com info@	es and Assess ion Installer I you have an CSAexams.c	sments, LC Qualificati re assumpt om (501)	、 ons ions!" 712-1272	C	SA		

Engineering, LLC

Mass Notification - Life Safety Fire Alarms - Sprinklers Process Safety - Plan Review Commissioning

All your FPE needs!

www.LaceyFPE.com info@LaceyFPE.com

Lacey Fire Protection Eng. LLC PO Box 723 Greenbrier, AR 72058 (501) 679-1753

Job Name : 48 Inch Long SprinkFlex Equal to 56' Schedule 40 1" Building : Location : System : Contract : Data File : 48SprinkFlex Area 1.WXF

Water Supply Curve C

Lacey Fire Protection Eng. LLC 48 Inch Long SprinkFlex Equal to 56' Schedule 40 1"

City V	Vater Suppl C1 - Static F C2 - Residu C2 - Residu	ly: Pressure : 5 al Pressure: 4 al Flow : 1	55 10 000					Demand: D1 - Elev D2 - Syst D2 - Syst Hose (De D3 - Syst Safety Ma	ation : em Flow : em Pressure : emand) : em Demand : argin :	5.197 141.063 46.266 100 241.063 7.655
150 140 130 P 120 R 110 E 100										
S 90 S 80 U 70 R 60 E 50 40		2								
30 20 10	D1 100 200	300	400	500 FLC	600 0W (N^1.85)	700	800		900	

Flow Diagram

Lacey Fire Protection Eng. LLC 48 Inch Long SprinkFlex Equal to 56' Schedule 40 1"

16.8 **DP04 EQ01**

16.8 **DP02 EQ02**

Fittings Used Summary

Lacey Fire Protection Eng. LLC 48 Inch Long SprinkFlex Equal to 56' Schedule 40 1"

Fitting Le Abbrev.	egend Name	1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
A E T	Alarm Rel E1 & E3 NFPA 13 90' Standard Elbow NFPA 13 90' Flow thru Tee	1 3	2 4	2 5	3 6	4 8	5 10	7.7 6 12	21.5 7 15	8 17	17 10 20	12 25	27 14 30	29 18 35	22 50	27 60	35 71	40 81	45 91	50 101	61 121

Units Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Pressure / Flow Summary - STANDARD

Lacey Fire Protection Eng. LLC 48 Inch Long SprinkFlex Equal to 56' Schedule 40 1"

Page 4 Date 10/11/2017

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
	10.0	56	9.0	na	16.8	0.1	168	7.0
E001	12.0	3.0	13.6	na	10.0	0.1	100	7.0
	12.0	5.6	13.0	na	16.9	0.1	169	7.0
E002	12.0	5.0	12.88	na	10.0	0.1	100	7.0
100	12.0	K – K @ E001	13.00	na	16.9			
100	12.0		13.0	na	10.0			
101	12.0		13.95	na	10.04			
102	12.0	K = K @ EQ02	15.2	na	17.58			
103	12.0	K = K @ EQ02	17.93	na	19.09			
104	12.0		19.95	na				
105	12.0		20.2	na				
106	12.0		20.51	na				
TOR	12.0		32.61	na				
BOR	-4.0		47.76	na				
TEST	0.0		46.27	na	100.0			
107	12.0	K = K @ EQ01	13.77	na	16.91			
108	12.0	K = K @ FO02	14 12	na	16.95			
109	12.0	K = K @ EQ02	15 30	na	17.69			
110	12.0		19.55	na	10.21			
110	12.0	$N = N \cong EQUZ$	10.15	lla	19.21			

The maximum velocity is 11.15 and it occurs in the pipe between nodes 110 and 105

Final Calculations - Hazen-Williams - 2007

Lacey Fire Protection Eng. LLC 48 Inch Long SprinkFlex Equal to 56' Schedule 40 1"

Page	5
Date	10/11/2017

Hyd. Ref.	Qa	Dia. "C"	Fitting	9	Pipe Ftna's	Pt Pe	Pt Pv	*****	Notes	*****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn			
DP01	16.80	1.049	E	2.0	56.000	9.000		K Factor =	= 5.60	
to FO01	16.8	120.0		0.0	2.000	-0.866		Vel - 63	24	
	0.0	0.0042		0.0	00.000	0.400		VCI = 0.2		
	16.80					13.600		K Factor :	= 4.56	
DP02	16.80	1.049	Т	5.0	56.000	9.000		K Factor :	= 5.60	
to	40.0	120.0		0.0	5.000	-0.866	-			
EQ02	16.8	0.0942		0.0	61.000	5.749		Vel = 6.2	24	
	0.0 16.80					13.883		K Factor :	= 4.51	
100	16.80	1.38		0.0	14.000	13.600		K Factor	@ node E	Q01
to		120.0		0.0	0.0	0.0				
101	16.8	0.0249		0.0	14.000	0.348		Vel = 3.6	50	
101 to	16.84	1.38		0.0	14.000	13.948	Using this p	pressure pe	er foot.	
102	33.64	0.0895		0.0	14.000	1.253	We do not	account for	r the "I"	fitting
102	17.58	1.38		0.0	14.000	15.201	-or 5° or the	elevation g	jain as t	Doth of -
to		120.0		0.0	0.0	0.0	these would	d also appl	y to the	
103	51.22	0.1949		0.0	14.000	2.729	-regular spr	inkler drop.	I hus t	56' _
103	19.09	1.61	Т	8.0	4.210	17.930	equivalent	tlex - the 1	2' existir	ng
t0 104	70 31	120.0		0.0	8.000	0.0	equivalent	drop result	s in a ne	ew .
104	0.0	2 469		0.0	12.210	10 0/10	-equivalent	of 44' x 0.0	942 = 4	.15 psi -
to	0.0	120.0		0.0	0.0	0.0	more than a	a center of	tile drop	Э.
105	70.31	0.0207		0.0	12.000	0.248		Vel = 4.7	71	
105	70.75	2.469		0.0	4.140	20.197				
to	4 4 4 . 0 0	120.0		0.0	0.0	0.0			4.5	
100	141.00	0.0740	25	12.0	4.140	0.309		vei = 9.4	+D	
106 to	0.0	2.469	ZE	12.0	12 000	20.506				
TOR	141.06	0.0747		0.0	162.000	12.106		Vel = 9.4	15	
TOR	0.0	2.469	E	6.0	16.000	32.612				
to		120.0	А	7.7	13.700	12.930		* * Fixed I	_oss = 6	
BOR	141.06	0.0747		0.0	29.700	2.219		Vel = 9.4	15	
BOR	0.0	4.1		0.0	50.000	47.761				
TEST	141.06	0.0047		0.0	50.000	0.237		Vel = 3.4	43	
	100.00							Qa = 10	0.00	
	241.06					46.266		K Factor :	= 35.44	
107	16.91	1.38		0.0	14.000	13.774		K Factor	@ node E	Q01
to	16.01	120.0		0.0	0.0	0.0		\/a 2.0	20	
100	10.91	1.20		0.0	14.000	14.405		Vei = 3.0	00 nodo 5	002
to	10.94	1.38 120.0		0.0	14.000 0.0	14.125 0.0		r ractor	e node E	
109	33.85	0.0906		0.0	14.000	1.268		Vel = 7.2	26	
109	17.69	1.38		0.0	14.000	15.393		K Factor	@ node E	Q02
to		120.0		0.0	0.0	0.0			~ ~	
110	51.54	0.1972		0.0	14.000	2.761		Vel = 11.	06	

Final Calculations - Hazen-Williams

Lacey Fire 48 Inch Lo	Protection I ng SprinkFle	Eng. LLC ex Equal to 56	Schedul	e 40 1"				Paç Dat	ge 6 :e 10/11/2017
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv.	g Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	*****	Notes *****
110	19.21	1.61	Т	8.0	4.210	18.154		K Factor	@ node EQ02
to		120.0		0.0	8.000	0.0			
105	70.75	0.1673		0.0	12.210	2.043		Vel = 11	.15
	0.0								
	70.75					20.197		K Factor	= 15.74

48 INCH SPRINKFLEX

Engineering, LLC

Mass Notification - Life Safety Fire Alarms - Sprinklers Process Safety - Plan Review Commissioning

All your FPE needs!

www.LaceyFPE.com info@LaceyFPE.com

Lacey Fire Protection Eng. LLC PO Box 723 Greenbrier, AR 72058 (501) 679-1753

Job Name : Schedule 40 Center of Tile Arm-over Building : Location : System : Contract : Data File : arm-over Area 1.WXF

Water Supply Curve C

Page 1

Flow Diagram

Lacey Fire Protection Eng. LLC Schedule 40 Center of Tile Arm-over

Page	2
Date	10/11/2017

16.8 **DP04**_ **EQ01**

16.8		33.7	71.	6	143.8	143.8
100 ← 101	← 102	← 103 ←	- 104 ←	105 ← 10		BOR TEST
\uparrow	16.8	51	1.6	↑ 71.6	14	43.8
1	16.8			/ 71.6		
16.9				1		
107 ← 102 ↑				1		
i	33.7			, ,		
17. 9				'n		
108 ← ¹ 03				I		
↑.				I.		
	51.6			ļ		
100 . 104				1		
109 ~ 104				1		
				, ,		
16.9		33.9	72.3	2		
110 ← 111	← 112	← 113 ←	- 114 ←	106		
↑ ,	16.9	52	2			
17 /	16.9					
115 <u>∠</u> 112						
↑ 110 (= 112						
i	33.9					
18. 1						
116 ← 113						
	50					
20 2	52					
^{∠0.4} 117 ← 114						

Fittings Used Summary

Lacey Fire Protection Eng. LLC Schedule 40 Center of Tile Arm-over

Fitting Le Abbrev.	egend Name	1/2	3⁄4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
A E G T	Alarm Rel E1 & E3 NFPA 13 90' Standard Elbow NFPA 13 Gate Valve NFPA 13 90' Flow thru Tee	1 0 3	2 0 4	2 0 5	3 0 6	4 0 8	5 1 10	7.7 6 1 12	21.5 7 1 15	8 1 17	17 10 2 20	12 2 25	27 14 3 30	29 18 4 35	22 5 50	27 6 60	35 7 71	40 8 81	45 10 91	50 11 101	61 13 121

Units Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Pressure / Flow Summary - STANDARD

Lacey Fire Protection Eng. LLC Schedule 40 Center of Tile Arm

Elevation

10.0

Node

DP01

No.

. LLC e Arm-over					Page Date	4 10/11/2017
K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
5.6	9.0	na	16.8	0.1	168	7.0
	8.51	na		0.1		
K = K @ EQ01	8.51 9.53	na na	16.8			

EQ01	12.0		8.51	na	
100	12.0	K = K @ EQ01	8.51	na	16.8
101	12.0		9.53	na	
102	12.0		9.88	na	
103	12.0		11.13	na	
104	12.0		13.9	na	
105	12.0		15.98	na	
106	12.0		16.24	na	
TOR	12.0		29.1	na	
BOR	-4.0		44.33	na	
TEST	0.0		43.0	na	100.0
107	12.0	K = K @ EQ01	8.57	na	16.86
108	12.0	K = K @ EQ01	9.67	na	17.9
109	12.0	K = K @ EQ01	12.09	na	20.03
110	12.0	K = K @ EQ01	8.65	na	16.94
111	12.0		9.69	na	
112	12.0		10.04	na	
113	12.0		11.32	na	
114	12.0		14.12	na	
115	12.0	K = K @ EQ01	8.71	na	16.99
116	12.0	K = K @ EQ01	9.83	na	18.05
117	12.0	K = K @ EQ01	12.29	na	20.19

The maximum velocity is 11.37 and it occurs in the pipe between nodes 114 and 106

Final Calculations - Hazen-Williams - 2007

Lacey Fire Protection Eng. LLC Schedule 40 Center of Tile Arm-over

Hyd. Ref.	Qa	Dia. "C"	Fittin or	g	Pipe Ftng's	Pt Pe	Pt Pv	*****	Notes	*****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn			
DP01	16.80	1.049	E	2.0	2.000	9.000		K Factor	= 5.60	
to FO01	16.8	120.0		0.0	2.000	-0.866		\/el - 6 '	24	
LQUI	0.0	0.0042		0.0		0.011			<u> </u>	
	16.80					8.511		K Factor	= 5.76	
100	16.80	1.049	4E	8.0	2.830	8.511		K Factor	@ node E	Q01
to	40.0	120.0		0.0	8.000	0.0			0.4	
101	16.8	0.0943		0.0	10.830	1.021		Vel = 6.2	24	
101 to	0.0	1.38 120.0		0.0	14.000	9.532				
102	16.8	0.0248		0.0	14.000	0.347		Vel = 3.0	60	
102	16.86	1.38		0.0	14.000	9.879				
to		120.0		0.0	0.0	0.0	\backslash			
103	33.66	0.0896		0.0	14.000	1.255		Vel = 7.2	22 ad 2' -	
103	17.90	1.38		0.0	14.000	11.134	 	is elbow al		
tO 104	51 56	120.0		0.0	0.0	0.0		op are adde		
104	20.03	1.61	т	8.0	4 210	13 806	tn	e arm-over	below.	
to	20.03	120.0	Į	0.0	8.000	0.0	Arm-ove	ar values l	lsina thi	ç
105	71.59	0.1710		0.0	12.210	2.088		a ner foot	onig un	0
105	0.0	2.469		0.0	12.000	15.984	Mo do n	ot account	for the "	T" fitting
to		120.0		0.0	0.0	0.0	of 5' or t	be account		a both of
106	71.59	0.0213		0.0	12.000	0.255			i yain a	
106	72.17	2.469	2E	12.0	154.140	16.239	-inese w	oulo also ap	piy to tr	
	1/13 76	120.0		0.0	12.000	0.0			p. Thu	s 4 drop
	0.0	2 /60	F	6.0	16,000	20.007	_+ 0.03 č	annover = 1	2.83 ex	isting
to	0.0	120.0	A	7.7	13.700	12.930	equivale	ent x 0.0949	= 1.22	psi tor
BOR	143.76	0.0774		0.0	29.700	2.298	existing	center or till	e arop.	
BOR	0.0	4.1	Т	29.067	50.000	44.325				
to		140.0	G	2.907	31.974	-1.732				
TEST	143.76	0.0049		0.0	81.974	0.403		Vel = 3.4	49	
	100.00					12 006		Qa = 10 K Factor	0.00 - 27.17	
107	16.96	1.040	25	6.0	2 920	42.990		K Factor	= 37.17 @ node E	001
to	10.00	120.0	JE T	5.0 5.0	2.830	0.007		K Facior		
102	16.86	0.0949		0.0	13.830	1.312		Vel = 6.2	26	
	0.0									
	16.86					9.879		K Factor	= 5.36	
108	17.90	1.049	3E	6.0	2.830	9.667		K Factor	@ node E	Q01
to	47.0	120.0	Т	5.0	11.000	0.0			~ 4	
103	17.9	0.1061		0.0	13.830	1.467		Vel = 6.0	64	
	0.0 17.00					11 12/		K Eactor	- 536	
100	20.02	1 0/0	2⊏	60	2 830	12 002		K Factor	– 0.00 @ nodo =	001
to	20.03	120.0	JE T	5.0	11.000	0.0		IN FOULUI		
104	20.03	0.1304	· ·	0.0	13.830	1.804		Vel = 7.4	44	
	0.0	·								

Page

Date

5

10/11/2017

Lacey Fire Schedule 4	Protection 40 Center o	Eng. LLC f Tile Arm-ovei	r					Page 6 Date 10/11/2017
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fitting or Eqv.	g Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****
	20.03					13.896		K Factor = 5.37
110	16.94	1.049	4E	8.0	2.830	8.652		K Factor @ node EQ01
to 111	16.94	120.0 0.0958		0.0 0.0	8.000 10.830	0.0 1.037		Vel = 6.29
111	0.0	1.38		0.0	14.000	9.689		
to		120.0		0.0	0.0	0.0		
112	16.94	0.0251		0.0	14.000	0.352		Vel = 3.63
112	16.99	1.38		0.0	14.000	10.041		
to	22.02	120.0		0.0	0.0	0.0		
113	33.93	0.0910		0.0	14.000	1.274		Vei = 7.28
113	18.06	1.38		0.0	14.000	11.315		
10 114	51 99	0 2004		0.0	0.0	0.0		Vel - 11 15
114	20.10	1.61	т	0.0	4 210	14 120		VCI = 11.15
114 to	20.10	120.0	I	0.0	4.210	14.120		
106	72.17	0.1735		0.0	12.210	2.119		Vel = 11.37
	0.0							
	72.17					16.239		K Factor = 17.91
115	16.99	1.049	3E	6.0	2.830	8,709		K Factor @ node EQ01
to	10100	120.0	T	5.0	11.000	0.0		
112	16.99	0.0963		0.0	13.830	1.332		Vel = 6.31
	0.0 16.99					10.041		K Factor = 5.36
116	18.05	1.049	3E	6.0	2.830	9.826		K Factor @ node EQ01
to		120.0	Т	5.0	11.000	0.0		
113	18.05	0.1077		0.0	13.830	1.489		Vel = 6.70
	0.0 18.05					11.315		K Factor = 5.37
117	20.19	1.049	3E	6.0	2.830	12.289		K Factor @ node EQ01
to		120.0	Т	5.0	11.000	0.0		
114	20.19	0.1324		0.0	13.830	1.831		Vel = 7.50
	0.0 <u>20.1</u> 9					14.120		K Factor = 5.37

Final Calculations - Hazen-Williams

Lacov Fire Protection Eng. LLC

SCHEDULE 40 CENTER OF TILE ARM-OVER

SCHEDULE 40 CENTER OF TILE ARM-OVER 3D VIEW

Engineering, LLC

Mass Notification - Life Safety Fire Alarms - Sprinklers Process Safety - Plan Review Commissioning

All your FPE needs!

www.LaceyFPE.com info@LaceyFPE.com

Lacey Fire Protection Eng. LLC PO Box 723 Greenbrier, AR 72058 (501) 679-1753

Job Name:Schedule 40 Simple Arm-overBuilding:Location:System:Contract:Data File:arm-over not center of tile Area 1.WXF

Flow Diagram

Lacey Fire Protection Eng. LLCPage2Schedule 40 Simple Arm-overDate10/11/2017

16.8 **DP01**— **EQ01**

16.8 33.7 71.8 144.3 144.3 16.**9** 107 ← 102 ↑ 33.7 1 18 | 108 ← 103 ↑ ↓ 51.6 20.**2** 109 *←* 104 72.4 16.9 33.9 $\begin{array}{c} \textbf{110} \leftarrow \textbf{111} \leftarrow \textbf{112} \leftarrow \textbf{113} \leftarrow \textbf{114} \leftarrow \textbf{106} \\ \uparrow \quad 16.9 \\ I \quad 52.1 \\ I \quad 16.9 \end{array}$ 17 j . 115 ← [']112 ↑ *j* 33.9 18.**1** 116 ← 113 110 ← 110 ↑ 20.4 117 ← 114

Fittings Used Summary

Lacey Fire Protection Eng. LLC Schedule 40 Simple Arm-over												Pa Da	Page 3 Date 10		0/11/2017						
Fitting L Abbrev.	egend Name	1/2	3/4	1	1¼	1½	2	21⁄2	3	3½	4	5	6	8	10	12	14	16	18	20	24
A E G	Alarm Rel E1 & E3 NFPA 13 90' Standard Elbow NFPA 13 Gate Valve	1 0	2 0	2	3 0	4 0	5 1	7.7 6 1	21.5 7 1	8 1	17 10 2	12 2	27 14 3	29 18 4	22 5	27 6	35 7	40 8	45 10	50 11	61 13
Т	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	

Units Summary

Diameter Units	Inches
Length Units	Feet
Flow Units	US Gallons per Minute
Pressure Units	Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Pressure / Flow Summary - STANDARD

Lacey Fi Schedul	re Protection E e 40 Simple Arr	Page Date	4 10/11/2017					
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
DP01	10.0	5.6	9.0	na	16.8	0.1	168	7.0
EQ01	12.33		8.4	na		-		-
100	12.33	K = K @ EQ01	8.4	na	16.8			
101	12.0		9.09	na				
102	12.0		9.44	na				
103	12.0		10.69	na				
104	12.0		13.46	na				
105	12.0		15.56	na				
106	12.0		15.82	na				
TOR	12.0		28.77	na				
BOR	-4.0		44.01	na				
TEST	0.0		42.68	na	100.0			
107	12.33	K = K @ EQ01	8.46	na	16.86			
108	12.33	K = K @ EQ01	9.61	na	17.97			
109	12.33	K = K @ EQ01	12.15	na	20.21			
110	12.33	K = K @ EQ01	8.54	na	16.94			
111	12.0		9.25	na				
112	12.0		9.6	na				
113	12.0		10.87	na				
114	12.0		13.69	na				
115	12.33	K = K @ EQ01	8.6	na	17.0			
116	12.33	K = K @ EQ01	9.77	na	18.12			
117	12.33	K = K @ EQ01	12.35	na	20.38			

The maximum velocity is 11.42 and it occurs in the pipe between nodes 114 and 106

Final Calculations - Hazen-Williams - 2007

Lacey Fire Protection Eng. LLC Schedule 40 Simple Arm-over

Hyd.	Qa	Dia.	Fittin	g	Pipe	Pt	Pt			
Ref.	_	"C"	or		Ftng's	Pe	Pv	******	Notes	*****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn			
	16.90	1 0 4 0	-	2.0	2 220	0.000		K Factor	5 60	
to	10.80	1.049	E	2.0	2.330	9.000 -1 009		K Factor	= 5.60	
EQ01	16.8	0.0942		0.0	4.330	0.408		Vel = 6.2	24	
	0.0									
	16.80					8.399		K Factor	= 5.80	
100	16.80	1.049	2E	4.0	1.830	8.399		K Factor	@ node E	Q01
to	10.0	120.0		0.0	4.000	0.143			4 د	
101	16.8	0.0942		0.0	5.830	0.549		vei = 6.4	24	
101 to	0.0	1.38		0.0	14.000	9.091				
102	16.8	0.0248		0.0	14.000	0.0		Vel = 3.6	50	
102	16.86	1.38		0.0	14.000	9,438	\ \			
to	10100	120.0		0.0	0.0	0.0	\mathbf{A}			
103	33.66	0.0897		0.0	14.000	1.256		Vel = 7.2	22	
103	17.97	1.38		0.0	14.000	10.694	This	s elbow an	id 2.3'	
to		120.0		0.0	0.0	0.0	drop	o are adde	ed to	
104	51.63	0.1978		0.0	14.000	2.769	the	arm-over	b <mark>elow</mark>	
104	20.20	1.61	Т	8.0	4.210	13.463				
to 105	71 83	120.0		0.0	8.000	0.0 2 101		Vol – 11	32	
105	11.00	2.460		0.0	12.210	15 564			52	
to	0.0	2.409		0.0	0.0	0.0				
106	71.83	0.0214		0.0	12.000	0.257	Arm over v		na thia	
106	72.45	2.469	2E	12.0	154.140	15.821		alues. Us	ng tris	
to		120.0		0.0	12.000	0.0	pressure pe	er 1001.		. euro
TOR	144.28	0.0779		0.0	166.140	12.944	_vve do not a			Titting
TOR	0.0	2.469	E	6.0	16.000	28.765	of 5' or the	elevation (gain as l	both of
to POP	111 20	120.0	A	7.7	13.700	12.930	-these would	l also app	ly to the	regular
	144.20	0.0779		0.0	29.700	2.314	–sprinkler dro	op. Thus	4.3' droj	o + 3.83
BOR	0.0	4.1 140.0	г G	29.067	50.000 31.974	44.009	armover = 8	3.13' existi	ng equi	valent x
TEST	144.28	0.0050	U	0.0	81.974	0.406	0.0948 = 0.7	77 psi for	existing	center
	100.00						of tile drop.			
	244.28					42.683		K Factor	= 37.39	
107	16.86	1.049	E	2.0	1.830	8.458		K Factor	@ node E	Q01
to		120.0 🖌	Т	5.0	7.000	0.143				
102	16.86	0.0948		0.0	8.830	0.837		Vel = 6.2	26	
	0.0					0 429		K Footor	E 40	
100	10.00	1.040		2.0	1 020	9.430		K Factor	= 0.49 @ node [001
108 to	17.97	1.049	E	2.0	7.000	9.608		K Factor	e node E	QUI
103	17.97	0.1068		0.0	8.830	0.943		Vel = 6.6	67	
	0.0				·					
	17.97					<u>1</u> 0.694		K Factor	= 5.50	
109	20.21	1.049	Е	2.0	1.830	12.149		K Factor	@ node E	Q01
to		120.0	Т	5.0	7.000	0.143				
104	20.21	0.1326		0.0	8.830	1.171		Vel = 7.5	50	
	0.0									

Page Date

5

10/11/2017

Lacey Fire Protection Eng. LLC Schedule 40 Simple Arm-over							Page 6 Date 10/11/2017			
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fittin or Eqv.	g Ln.	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	****** Notes *****		
	20.21					13.463		K Factor = 5.51		
110	16.94	1.049	2E 4.0		1.830	8.544		K Factor @ node EQ01		
to		120.0		0.0	4.000	0.143				
111	16.94	0.0959		0.0	5.830	0.559		Vel = 6.29		
111	0.0	1.38		0.0	14.000	9.246				
to		120.0		0.0	0.0	0.0				
112	16.94	0.0251		0.0	14.000	0.352		Vel = 3.63		
112	17.01	1.38		0.0	14.000	9.598				
to		120.0		0.0	0.0	0.0				
113	33.95	0.0911		0.0	14.000	1.275		Vel = 7.28		
113	18.12	1.38		0.0	14.000	10.873				
to		120.0		0.0	0.0	0.0				
114	52.07	0.2010		0.0	14.000	2.814		Vel = 11.17		
114	20.38	1.61	Т	8.0	4.210	13.687				
to		120.0		0.0	8.000	0.0				
106	72.45	0.1748		0.0	12.210	2.134		Vel = 11.42		
	0.0 72.45					15 821		K Factor - 18.21		
445	17.00	1.040		2.0	1 0 2 0	9.604		K Factor @ pada EQ01		
to	17.00	1.049	с т	2.0	7.000	8.604 0.173		K Factor @ hode EQUT		
112	17 0	0.0964	I	0.0	8 830	0.143		Vel = 6.31		
	0.0	0.0001		0.0	0.000	0.509		K Factor - 5.40		
	17.00	4.040		• •	4 000	9.596				
116	18.12	1.049	E T	2.0	1.830	9.773		K Factor @ node EQ01		
112	10 10	120.0	I	5.0	7.000	0.143		Vol - 672		
115	10.12	0.1004		0.0	0.030	0.957		Vei = 0.75		
	0.0 18.12					10.873		K Factor = 5.50		
117	20.38	1.049	Е	2.0	1.830	12.355		K Factor @ node EQ01		
to		120.0	Т	5.0	7.000	0.143				
114	20.38	0.1347		0.0	8.830	1.189		Vel = 7.57		
	0.0									
	20.38					13.687		K Factor = 5.51		

Final Calculations - Hazen-Williams

SCHEDULE 40 SIMPLE ARM-OVER

SCHEDULE 40 SIMPLE ARM-OVER

=